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Parton branching and proton structure

B Branching probabilities

B Parton Branching — kinematics

B Solution of massless Dirac equation and spinor products
B Parton Branching

B DGLAP equation
* Quarks and gluons
* Solution by moments
* Gluon distribution at small x
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Branching probabilities

By
0.

B We can write the matrix element squared for n 4 1 partons in the small-angle
region in terms of that for n partons,

4 2
IMpi1]? ~ %C F(2;ha, hy, he) + non — singular terms| M, |

where C'is a colour factor functions F'(z) contain the momentum dependence of
the branching probabilities.

B After azimuthal averaging we obtain the splitting functions.

Z /dﬁbc F(z;hg,hp, he) = Pba(Z)

ha7h'ba

where P,,(z) is the appropriate splitting function

dt
dO‘n_|_1 = dO‘n 7 dz 2‘_5' Pba(z)
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Parton branching - kinematics

2 2
pa pa
= (FE —,0,0, E, —
A Pa ( a+4Ea a 4Ea)
7 —>
ppy = (Ep,+Epsindy,0,+FE, cosby)
pC — (EC7 _EC Sin ec, O, +Ec COS 90)

B the kinematics and notation for the branching of parton a into b 4+ c¢. We assume
that

ph, Pe K Py =t
B . is an outgoing parton, which is called timelike branching since t > 0.
B The opening angle is § = 6 + 0.. Defining the energy fraction as

2=FEy/Eq=1—E./E, ,

we have for small angles, t = 2E, E.(1 — cos0) = z(1 — 2)E26?

B using transverse momentum conservation,

0_1 t B 0y _%
B\ z1-2) 1—-2z z
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B We consider first the case that all the partons a, b and c are gluons. There will be a
factor in the amplitude proportional to 1/t from the propagator for gluon a, and a
triple-gluon vertex factor

VQQQ — ngBcsgsgez [gaﬁ(pa - pb)’y + 9B~ (pb - pc)a + gfyoz(pc - pa)ﬁ]

where ¢%' represents the polarization vector for gluon i. Note that here all

momenta are defined as outgoing, so that p, = —pp — pc. Using this and the
conditions ¢; - p; = 0,

Vagg = =295 (ea - &) (ec - pb) — (€5 - €c)(ea - Pb) — (e - €a) (b - Pe)] -

M three gluons are almost on mass-shell, we can take their polarization vectors to be
purely transverse. We shall resolve them into plane polarization states, € in the
plane of branching and sg’“t normal to the plane

in
NSy
6in 6in — gout _out__ 4
i J - i j
In _out out
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B For small 4, neglecting terms of order 62, we have

sic? pp = —FEpfy, = —z(1 —2)E,0
€Ibn : pc — +Ece — (1 - Z)Eae
E:icn * Pb = —Ebe = —ZEa9 .

B Note that every vertex factor is proportional to 6, which, together with the
1/t o< 1/62 from the propagator, gives a 1/6 singularity in the amplitude.

B |n the small-angle region

4g2

‘M’n+1‘2 ~ TCAF(Z;gaagbagc)‘Mn‘Q

where the colour factor C4 = 3 comes from fABC fABD — ¢, 6D and the
functions F'(z;e4,¢€p,c)

Ea £p Ec F(z;€a,€p,€c)

in in in | (1—2)/z+2z/(1—2)+4+ 2(1 — 2)
in  out out z(1 — 2)

out in  out (1—2)/z

out out in z/(1 —2)
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Gluon splitting function

All polarization combinations not given in the table are forbidden. Defining (F') by

averaging F'(z;eq, €p, €c) With respect to the polarization of a and summing over those of
b and ¢, we find that

A 1 —
Cu (F) = Pyy(z) = Ca CL 2 i (1-2)

z 11—z

where ng(z) is called the unregularized gluon splitting function

Introduction to QCD at CollidersLecture Il: Parton Branching and proton structure — p.8/40



Soft enhancements and angular correlations

B the enhancements in the matrix elements at z — 0 (b soft) and z — 1 (c soft) are
associated with the emission of a soft gluon polarized in the plane of branching.

M the correlation between the plane of branching and the polarization of the
branching gluon. If we suppose that the polarization of gluon a is at an angle ¢ to
the plane then the function F' becomes

Fy o Z[COSQ¢|M(€Z]>€b,€c)|2+Siﬂ2¢|M(€2Ut>€b,€c)|2]

€b,c
1 — 2z z

_l_
z 11—z

11—z

= COSQ¢|: —|—22(1—z)}—|—sin2¢[1—z—l— © }
z

1 —
= ST +2(1—2)+2(1 — 2)cos2¢ .

z 11—z

B The first three terms give the unpolarized result and the last gives the correlation,
which favours an orientation in which the polarization of the branching gluon lies in
the plane of branching. The correlation is quite weak, however: its coefficient
z(1 — z) vanishes in the enhanced regions z — 0, 1 and reaches its maximum at

z = % where it is still only 1/9 of the unpolarized contribution.
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Dirac egn. for massless fermions

B The fermions involved in high energy processes can often be taken to be
massless.

B We choose an explicit representation for the gamma matrices. The Bjorken and
Drell representation is,

o (1 O ;. (0 o 5 (0 1
fY_ 0_1 7/7_ —O'Z O 7/7_ 107

The Weyl representation is more suitable at high energy

o (0 1\ , (0 -\ 5 (1 O
7_1077_0_7/ O 7/7_0_17

In the Weyl representation upper and lower components have different helicities.
B Both representations satisfy the same commutation relations.

VAT +A7AH = 29"

: : : L 0 : :
M in the Weyl representation 4%~* = (2 Z) o are the Pauli matrices.
—0
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B The Dirac eqgns for the right- and left-handed components become,

pm ) _ pt 0 —ip?) _
(_(pl 4+ ip2) Pt > U—I—(p> =0, <+(p1 4 in) b > U _— (p) = 0,

[ pt ] 0
)= |VP e ») 0
u = , u—(p) = . :
P 0 P Vpmeier
0 | VP
where
pl :I:’Lp2 B pl :l:’LpQ

+ 0., 3
= = —, p- = p xp.
Vv (ph)2 + (p2)2 pTp—

In this representation the Dirac conjugate spinors are
aF(p) = ul (p)y" = {0,0, Vrt, \/p—e_“%} , u_(p) = [\/p‘ei“pp,— p+,0,0}
B Normalization
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Interlude: spinor products

Introduce a bra and ket notation spinors corresponding to (massless) momenta p;,
t =1,2,...,n labelled by the index i

F) = |p5) = uxlpi) = vepi),
(= (]| = wE(pi) = T(pi).
We define the basic spinor products by
(ig) = (7157) = a=(pus(py), [if] = GT57) = wx(pi)u—(ps)-
The helicity projection implies that products like (i 7|5 1) vanish.

(i + 5+) = (i — [j=) = (ia) = [i1] = 0

(tj) = = (1), [1g] = —ly1]
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We get explicit formulae for the spinor products valid for the case when both energies
are positive, p} >0, p9 >0

<’&]> = 1/pi_pj_e’i90pi — /pj—pj—ezﬂppj — /|Sij €i¢ij,
ig] = \/p;ij_G_zgppj — 1/pi_pje—i90p7; = — |Sij|e—’i¢z‘j

where s;; = (p; +p;j)* = 2p; - pj, and

L+ 1+ 2 & _ o+

pb;p; —DP;D; sin ¢y; = p;p; —DP;Db;
1] T

\/ [sijlp P \/ sijlp; D)

B The spinor products are, up to a phase, square roots of Lorentz products.

COS Qi =

B The collinear limits of massless gauge amplitudes have square-root singularities;
spinor products lead to very compact analytic representations of gauge
amplitudes.
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Branching probabilities

B Consider the case where

2 2
pa pa
= E —.,0,0, Eq —
Pa ( a+4Ea a 4Ea)

po ~ (Ep, +Ep0y,0,+Ep)
Pec (Ec, _Ecec, 0, ‘|‘Ec)

Thus for example
0
ul (py) = V/2E, {1, 5",0,0}

and

1
Oc

U+ (pc) = U-— (pc) = V2E,

2
0
b O -

Hence for polarization vectors ¢;, = (0,1,0,0), eout = (0,0, 1,0)

_ c 0 0 1 1
guz_): ’70’71 vo = g\/4EyE. (1, 51)) (1 > (_9_C> = —g\/EbEc(eb — 90)

0 2
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_ Pink .
—gul_’i_'yﬂeam vE =gV EyE:(0p —0:) = g/ 2(1 — 2)(1 —22)E,0 ,

—gﬂivﬂszouwvi = ig\ EpEc(0p + 0c) = ig\/2(1 — 2)EL0

and the matrix element relation for the branching is

9
M1 ~ %TRF(Z§5aa)\ba)\c>|Mn|2

where the colour factor is now Tr(t4¢4)/8 = Tr = 1/2. The non-vanishing functions
F(z;ea, A\p, Ac) for quark and antiquark helicities A, and A\, are

€a A Ac | F(z5€a, Ap, Ac)
in £+ T (1 —22)?
out =+ F 1

Summing over the polarizations we get
2[(1 —22)2 ¢ 1] = 4(22 + (1 — 2)?).
There is a strong anticorrelation between the polarization and the plane

Fy occos® ¢ (1 —22)* +sin® ¢ = 2% + (1 — 2)? — 22(1 — 2) cos 2¢ .

Introduction to QCD at CollidersLecture II: Parton Branching and proton structure — p.15/40



Colour factors

B The Bengtsson-Zerwas angle x gz, defined as the angle between the planes
defined by the two lowest and two highest energy jets:

(P1 X P3) - (P3 X Ps)

COS XBZ =

PP |3 || P4l

B the figure shows the x gy distribution measured by the L3 collaboration at LEP.
The curves correspond to the Abelian and non-Abelian QCD theories, and the
data exhibit a clear preference for the latter.

40 L L LI S NN N N BN B B B B B

30

T T T [ T T T 1
~—
[ LA N A

Event Fraction (%)

20
B e DATA |
- Abelian |
10 = |
0 _I TN T T A T T T TN N TN N T [N T T T N AN A
0° 20° 40° 60° 80°
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Colour factors

1.4 Previous results OPAL results
------- ALEPH (68% C.L.) — 95 % C.L.
---- DELPHI (68% C.L.) L] 68 % C.L.
1.2 | - OPAL (68% C.L.) * SU3) QCD
= ¢ light gluino
1.0 -
0.8 | -
g I |
o | ]
\m o _|
0.6 | i
04 - N
02 I -
0.0 B 7
_0.2 _I L1 1 | | | | | | | | | | | | | | | | L1 11 | L1 11 | L1 11 | L1 1 I_
1.0 125 15 175 2.0 225 25 275 3.0 325 3.5

C,/Cy
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Branching probabilities summary

B Including color factors we obtain the unregulated branching probabilities.

. 1+ 22 Ze
P = C : 1=z
aq (%) F _(1_2)} ,
. (14 (1 — 2)2] i
Pge(2) = CF ( . ) ; ifz
Pyg(z) = Tr [zQ +(1—2)%], w<1z
A 1 —
Pyg(z) = Cqy { © + Z—i—Z(l—z)] : “%':
(1—2) z 1-7
MCpr=3C4=3Tr=1.
B These are unregulated probabilities because they contain singularities at z = 1
and z = 0.
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DGLAP equation

B Consider enhancement of higher-order contributions due to multiple small-angle
parton emission, for example in deep inelastic scattering ( DIS)

A —ty 1t S —tp_y —tn
T, %xl % .o %xn_l x,

B Incoming quark from target hadron, initially with low virtual mass-squared —ty and
carrying a fraction xg of hadron’s momentum, moves to more virtual masses and
lower momentum fractions by successive small-angle emissions, and is finally

struck by photon of virtual mass-squared ¢ = —Q?2.

B Cross section will depend on Q2 and on momentum fraction distribution of partons
seen by virtual photon at this scale, D(z, Q?).
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B To derive evolution equation for Q2-dependence of D(z, Q?), first introduce
pictorial representation of evolution, also useful later for Monte Carlo simulation.

B Represent sequence of branchings by path in (¢, z)-space. Each branching is a
step downwards in x, at a value of £ equal to (minus) the virtual mass-squared
after the branching.

B Att = to, paths have distribution of starting points D(xq, tg) characteristic of
target hadron at that scale. Then distribution D(x, t) of partons at scale ¢ is just
the x-distribution of paths at that scale.
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Change in parton distribution

B Consider change in the parton distribution D(z,t) when t is increased to ¢ + §t.
This is number of paths arriving in element (¢, =) minus number leaving that
element, divided by .

B Number arriving is branching probability times parton density integrated over all
higher momenta ' = z/z,

6t 1 .
5Din(a3,t) = — dx’ dz—P( YD(z',t) 6(x — zx')
21
_ /@O‘—SP D(z/2, 1)
z 2w

B For the number leaving element, must integrate over lower momenta =/ = zx:
ot
5Dout(a:, t) = D(x t)/ dx’ dz—P(z) §(z' — zx)

- —D(x,t)/ dz 25 P(2)
t 0 2T
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Change in parton distribution

B Change in population of element is

ot 1 . 1
- 2 a2 [—D(az/z,t)—D(a:,t) .
t 0 2T z

M Introduce plus-prescription with definition

1 1
| dzt@ @ = [ do (1@ = F) ()
Using this we can define regularized splitting function
P(z) = P(2)4

B Plus-prescription, like the Dirac-delta function, is only defined under integral sign.
B Plus-prescription includes some of the effects of virtual diagrams.
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DGLAP

We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution equation:

1 Z
t%D(w,t):/x 9208 pD(x/2 1) .

z 21
B Here D(z,t) represents parton momentum fraction distribution inside incoming

hadron probed at scale t.

M |n timelike branching, it represents instead hadron momentum fraction distribution
produced by an outgoing parton. Boundary conditions and direction of evolution
are different, but evolution equation remains the same.
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Quarks and gluons

B For several different types of partons, must take into account different processes
by which parton of type i can enter or leave the element (¢, 6x). This leads to
coupled DGLAP evolution equations of form

0 Ldz ag
FRCEEDS | SR/

B Quark (i = g) can enter element via either ¢ — qg or g — qg, but can only leave
via ¢ — gg. Thus plus-prescription applies only to ¢ — qg part, giving

11—z

Pugs) = ﬁqq<z>+=cF(”22)+

Pag(2) = Pyg(z) =Tr[2*>+ (1 —2)?]
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B Gluon can arrive either from g — gg (2 contributions) or from ¢ — qg (or § — Gg).
Thus number arriving is

sp . - o 1dz@_s{pgg(z>[Dg($/Z,t)+Dg(ac/(1—z),t)]

g,IN t Jo 2 2 1—z

52 o (52 ) oo (52

e fanom, (£0) Pt o (2) <2 (2]}

B Gluon can leave by splitting into either gg or ¢g, so that
5D _ Ot [0S [P Nt Pyy(2)d
gout — 4 g(x,t) . o [ 99(2) + N¢Pqg(2) Z} :

B After some manipulation we find

Pyo(z) = 20A[< © —|—%z(1—z)>+—|—1;z—l—%z(1—z)]—%NfTRcS(l—z),

1—=z
1+ (1—2)2
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B Using definition of the plus-prescription, can check that

z 1 z 1 11
“2(1— = — = 41— ——5(1—
<l—z+2z( Z)>+ Ao, Ta7t—a T pol=2)
2 1 2
(1—|—z> _ L+§5(1_z)7
1—2z /4 1—2)+ 2

so P,, and P,, can be written in more common forms

1+ 22 3
Pye(z) = CF [m + 55(1—2)]
Pyo(2) = 204 {(1 _"’Z)+ + 2 - © - z)] n %(11@ — ANTR) 5(1 — 2) .
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Parton distributions

1 I I | I I

x f(xu)

MRSA, p°=10 GeV®
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Solution by moments

B Given D;(z,t) at some scale t = tq, factorized structure of DGLAP equation
means we can compute its form at any other scale.

B One strategy for doing this is to take moments (Mellin transforms) with respect to x:

1
D;(N,t) :/ de N7t D;(x,t) .
0

Inverse Mellin transform is

1 B
D;(z,t) = —/ dN =N D;(N,t),
C

271

where contour C' is parallel to imaginary axis to right of all singularities of
integrand.

B After Mellin transformation, convolution in DGLAP equation becomes simply a
product:

0 ~ -
taDz'(x,t) = i (N,a5)D; (N, t)
J
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Anomalous dimensions

B The moments of splitting functions give PT expansion of anomalous dimensions

Vig -
) _ §3m> ag\ntl
Yij (N7 O‘S) — nzo%@j (N) (271_)
(0)( - b N-1
Vi (N) = f%UW={A<kZ T Pij(2)

B From above expressions for P;;(z) we find, (—— — — .7 1)

[1—=z]4 J=1 5
N
ONN) = Op| -1+ SIS o
Yod (V) Fl 2 TNV T Z;k
2
)N _ 7 (24 N + N*°)
Tag' (V) RINONTF DN +2)
2
Oy — O (24 N + N?)
/YQCI() F N(NQ—l)
AWIN) = 20a| - =+ + Z ——NfTR-
79 12 N(N-1) (N+1) N+2) — k
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Scaling violation
B Consider combination of parton distributions which is flavour non-singlet, e.g.
Dy = Dgq; — Dg,; or Dg; — Dg;. Then mixing with the flavour-singlet gluons drops
out and solution for fixed ag is

Y

t )'qu(N7aS)

Dy (N, t) = Dy (N, to) (%

B We see that dimensionless function Dy, instead of being scale-independent
function of  as expected from dimensional analysis, has scaling violation: its
moments vary like powers of scale ¢ (hence the name anomalous dimensions).

B For running coupling ag(t), scaling violation is power-behaved in In ¢ rather than t.
Using leading-order formula a.g(t) = 1/bIn(t/A?), we find

as(t0)>dqq(N)

Dv (N, t) = Dy (N, to) ( o)

where dgq(N) = 759 (N)/2nb.

B Flavour-singlet distribution and quantitative predictions will be discussed later.
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Combined data on F2 proton

F, -log,,(x)

HERA F,

| x=6.32E-5

x=0.000102
x=0.000161
- x=0.000253

= ZEUS NLO QCD fit

7 x=0.0004 —— H1 PDF 2000 fit
x=0.0005
x=0.000632 e H1 94-00

x=0.0008
4 H1 (prel.) 99/00

x=0.0013 = ZEUS 96/97

" A C 1S
] x=0.0021 ¢ BCDVS
X - x=0.0032 NMC
L A
L’ - x=0.005
I A
ey 4. x=0.008
. x=0.013
' ossi x=0.021
[P =
o Y S i x=0.032
Lok
o e gmenme gty =005
‘é“_ﬁ-‘d./r .
—b =07 A
s ey —mSgyomm 3geal g8 x=0.08

- e e ;&=0.18
soveusenly i3 %T %025
TS e, ema m

e A 23§ %—TX=0.4

vommo n o B oo X065

| | Ll | |
1 10 10° 10° 10° 10
2 2
Q7 (GeV")

B Now dgq(1) = 0 and dgq(N) < 0

for N > 2. Thus as t increases
V' decreases at large x and increases
at small z. Physically, this is due
to increase in the phase space for
gluon emission by quarks as t in-
creases, leading to loss of mo-
mentum. This is clearly visible in
data:
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Flavour singlet combination

B For flavour-singlet combination, define

EZZ(QH—@;)-

Then we obtain

0 ag(t)

ta = o [Pyq ® X4+ 2NfPyy @ g
0 aq(t

t= = S()[qu@)z"‘ng@g]-
ot 27

B Thus flavour-singlet quark distribution > mixes with gluon distribution g: evolution
equation for moments has matrix form

tﬁ )y _ Yaa  2NfYqg
ot g Yaq Yag

@ M@
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Anomalous dimension matrix as a function of N.

10 | T ||||||| | T |||||| 10 | T ||||||| | T ||||||

B aq ] B qg ]

51— — 51— —
O ———————

L ] ]

i S T —— L+NL ]

_10 | | ||||||| | | |||||| _10 | | ||||||| | | ||||||

30 | II|IIII| | II|IIII 30 ‘\\l II|IIII| | II|IIII

20 84| 20— g€ |
y(NYO[ o 10—
0 0

-10— — -10
S N N I [ Lol 3
1 2 5 1 2 5 10 2 5 1 2 5 10

N-1 N-1

Sso
X

"Ill

B Rapid growth at small N in gq and gg elements at lowest order

B In NV behaviour at large N in gq and gg elements

B NNLO now known

B Singlet anomalous dimension matrix has two real eigenvalues v+ given by

1
YE = 5[’)’99 + Yqq = \/(799 - qu)z + 8Nf79q7qg] .
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Solution of lowest order DGLAP matrix equation

The reduced DGLAP equation can be written as
- _ =P _
du \ g(u) g(u)

B Define projection operators, M4

2
_ 1 as(pg)
where u = 5~ In e

M, =

_m[ —P+7+1],

+P—7_1], M_zm[

where M. M4 =M M. M_=M_M,; =0,M; +M_ =1 and
P =7 My +v-M-_

B The solution is

< 30 ) N [M+ exp(y+u) + M- eXp(%u)] ( 2((8)) >

g(u)
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Momentum partition vs (Q°

B For second moment

Ot (2,t) = X(2,t)+g(2,t) with eigenvalue 0,
n

4
O (2,t) = X(2,t) — %g@,t) with eigenvalue — <§CF + %) :

O™, corresponds to the total momentum carried by the quarks and gluons, is
independent of . The eigenvector O~ vanishes in the limit t — oc:

Y

B 4 1
o= (20) "o v 58 e

so that asymptotically we have

3(2,1) ny 3
Y

= nys .
9(2,t)  4Cp 16 7
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Asymptotia 1s approached slowly

The momentum fractions f, and f, in the u? =t — oo limit are therefore

3n 16

e = 6 an, " 797 T653n,

M Scaling violation depends logarithmically on Q2.

B Large variation at low Q?

1 [T TTTI [T TTTIT [T TTTI T \HHH‘ T \HHH‘ [T TTTIT [ TTTTI
g

=

3

1

c ol |2

.03

dx x f(xt)
N

.01

.003

fo
HH‘
\\
| ‘ \\HH‘ |

™

[l \HH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ | \HHH‘ [ L
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Gluon distribution

B [arge number of gluons per unit rapidity
B The LHC is a copious source of gluons
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Growth of gluon at small x

Using the moments of the DGLAP equation we have that,

2 gV, 0) = S0 (g, 1)

where the leading behaviour of the anomalous dimension is,

2N¢

DNy ~
’Ygg() N _1°

In this limit the solution for the moments of the gluon distribution is

o(V.0) = g(Nto)exp (55 ).

where ¢ is defined by

dt’ N, Int/A2
/ —as(t)——m(LQ) .
to b lnt()/A
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Inverse Mellin transform

To return to x space we perform the inverse Mellin transform

1 C+ioco B B 1 C+ioco
rg(z,t) = 2_77’&/0  dN =z (N=Dg(N,t) = 2—7”/0 - dN g(N,to) exp [f(N)] :

where ReC is to the right of all the singularities of g(V, t) and the exponent f is

§
N—-1"

fIN)=(N-1Y +

with Y = In(1/x). In the limit in which both Y and £ become asymptotically large, we
can estimate this integral by expanding about the saddle point of the exponential,

1
FIN) = f(No) + < " (No)(N = No)?,  No=1+1/=,
which gives, for the asymptotic solution,

zg(z,t) ~ g(No, to) exp(2¢/£€Y) .

2
x, ~ —e In In—, N.=3, b=
9(z, 17 z A Inp2/A2 = ¢ 127
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Recap
B QCD at high momentum transferred is perturbative because of the property of
asymptotic freedom.

M |In the small-angle approximation, parton evolution can be represented as a
branching process from higher values of x

B DGLAP equation predicts growth at small = and shrinkage at large = with
increasing Q2.

B |n particular, the gluon grows rapidly at small x.
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